Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I)

Sommersemester 2015

Veranstalter :

Prof. Dr. Ulf Kleineberg (**ulf.kleineberg@physik.uni-muenchen.de**) LMU, Physik Department Am Coulombwall 1, 85748 Garching (089) 289 14003

Vorlesungstermine + Ort :

3 SWS (plus 1 SWS Laborbesichtigung) 6 ECTS Punkte LMU Garching, Coulombwall 1 Mittwochs, 13:00 –16:00 Uhr, Seminarraum 224 (bis einschliesslich 3.6.) mündliche Abschlussprüfung **Vorlesungsinfos** : www.xray.physik.uni-muenchen.de

Literatur:

- Eberhard Spiller: Soft X-ray Optics / (SPIE Optical Engineering Press, Bellingham, Washington, ISBN 0-8184-1654-1)
- A. Michette : X-ray Optics
- D.T. Attwood: Soft X-ray and Extreme Ultraviolet Radiation (Cambridge Univ. Press, ISBN 0-521-65214-6)
- Sowie aktuelle Wissenschaftspublikationen... Begleitendes Seminar :

Studentische Vorträge zu aktuellen Forschungsarbeiten(z.B. Röntgenmikroskopie, EUV Lithographie, Röntgenlaser, ...)Ort und Zeit : Mittwochs 16 c.t – 18 Uhr, Seminarraum 219

Outline :

•Basics :

•Introduction to physics in the soft X-ray range

- •Basic processes, emission and absorption
- •Maxwell-equations, wave equation
- •Scattering by free and bound electron
- •Scattering by multiple electron atom, atomic scattering factor
- •Complex refraction index, wave propagation in media

•Thin films optics :

- •Interfaces, Fresnel-equations, total external reflection, Brewster angle
- •Multilayer-Optics, basics, theory and technology

•Sources :

- •Introduction to Synchrotron Radiation, Wigglers and Undulators
- •Basics of the Free Electron Laser (FEL)
- •Laser Plasma (LIP) and discharge plasma (DPP) sources
- •X-ray lasers, High Harmonics

•Nanooptics and diffractive optics

- •Diffractive optics, amplitude and phase gratings
- •Zoneplates and refractive optics
- •Waveguides and capillary optics

•Detectors for soft X-rays

•CCD, photodiode, DLD detector

Technology and applications :

•Soft X-ray microscopy and micro-spectroscopy

•Diffractive Imaging and Holography

•Extreme Ultraviolet Lithography

•Attosecond electron spectroscopy and microscopy

• Solar astronomy

•....

From radio waves to gamma rays

What is specific about the soft X-ray range ?

Short wavelength ~ 1 nm > see smaller features > write smaller features

Core level electron energies > element specificity > chemical specificity

Single cycle period sub-fsec > shortest electromagnetic pulses > attosecond physics of e-dynamics

Resolution

How to determine the resolution of an optimal instrument / microscope ?

• Rayleigh-criterion:

$$d = \frac{0.61 * \lambda}{NA}$$

with λ = wavelength NA = numerical Aperture

NA Immersion : NA Immersion

http://micro.magnet.fsu.edu/primer/java/nuaperture/index.html

http://micro.magnet.fsu.edu/primer/java/microscopy/immersion/index.html

Rayleigh: Resolution

http://micro.magnet.fsu.edu/primer/java/imageformation/rayleighdisks/index.html

- Between the K-edge of carbon and oxygen
 K-absorption edge O₂ : 2.28 nm = 543.1 eV
 K-absorption edge C : 4.36 nm = 284.2 eV
- Natural contrast between materials containing carbon and water
- In-Vivo image of biological objects with high resolution

X-ray microscopy methods

vww.attoworld.de

Refractive index, X-ray optics

See smaller features : soft X-ray microscopy

Soft X-ray microscopy on diatoms (silica algae)

Eph = 97 eV

Lateral resolution : < 200 nm

Soft X-Ray Microscopy at the ALS

nm (

es &

Magnetic Recording Materials

<u>~~~~~~~~~~~~~~~~~~~~~~~~~~</u>

(10) (H) (Y) (G)

Cryo Microscopy for the Life Sciences

1 μm Fe L₃ @ 707.5 eV

FeTbCo Multilayer with AL Capping Layer Cryo X-Ray Microscopy of 3T3 Fibroblast Cells

Protein Labeled Microtubule Network

Courtesy of C. Larabell, UCSF and W. Meyer-Ilse, CXRO/LBNL

Courtesy of P. Fischer, Wuerzberg and G.Denbeaux, CXRO/LBNL

Different Photons Energies

150 nm thick slices through the volume

CCD

Nanotomography of Cryogenic Fixed Cells

Courtesy of G. Schneider (BESSY) Surf. Rev. Lett. 9, 177 (2002)

λ = 2.5 nm Courtesy of C. Larabell (UCSF & LBNL) and M. LeGros (LBNL)

Soft X-Ray Nano Tomography of a Yeast Cell

UC

Courtesy of C. Larabell / UCSF & LBNL, and M. LeGros / LBNL

Transmission of fluoride materials in the DUV

No window materials below 110 nm wavelength
 No conventional transmission lenses possible !

193 nm DUV lithography objective (Zeiss)

> CaF aspherical lense optics

Write smaller features : Extreme Ultraviolet Lithography

Challenges of Extreme Ultraviolet Lithography

Condenser optic

Projection optic

Courtesy of J. Taylor and D. Sweeney / LLNL

AST 210/EECS 213 Univ. California, Berkeley

Ch08_At_WaveEUV.ppt

Complex index of refraction/atomic scattering factors

- 🖞 & β << 1
- 🖞 crossover

Complex atomic scattering factors

$$f^0(\omega) = f_1^0(\omega) - i f_2^0(\omega)$$

valid only for : long wavelength $\lambda >> a_0$ (0.529 A) or forward scattering

 f_1 equals Z for $\omega \gg \omega_s$ all electrons scatter in phase !

Scattering cross section $\sim Z^2$

Principle of XUV multilayer mirrors at near normal incidence angles

Courtesy of Saša Bajt / LLNL

Mo/Si Multilayer Coating

(T. Nguyen, CXRO/LBNL)

Professor David Attwood

First year of volume production	2001	2003* - 2004 -	2005* -2007-	2007* - 2010-	2009* -2013-	2011* - 2016 -
Technology Generation (Dense lines, printed in resist)	130 nm	90 nm	65 nm	45 nm	<mark>32 nm</mark>	23 nm
Isolated Lines (in resist) [Physical gate, post-etch]	90 nm [65 nm]	53 nm [37 nm]	35 nm [25 nm]	25 nm [18 nm]	<mark>18 nm</mark> [13 nm]	13 nm [9 nm]
Chip Frequency	1.7 GHz	4.0 GHz	6.8 GHz	12 GHz	19 GHz	29 GHz
Transistors per chip (HV) ($3 \times \text{for HP}$; $5 \times \text{for ASICs}$)	100 M	190 M	390 M	780 M	1.5 B	3.1 B
DRAM Memory (bits)	510 M	1.1 G	4.3 G	8.6 G	34 G	69 G
Gate CD Control (3σ, post-etch)	5 nm	3 nm	2 nm	1.5 nm	1.1 nm	0.7 nm
Field Size (mm \times mm)	25 × 32	25 imes 32	22×26	22×26	22×26	22×26
Chip Size (mm) (2.2 \times for HP ; to 4 \times for ASIC)	140	140	140	140	140	140
Water Size (diameter)	300 mm	300 mm	300 mm	450 mm	450 mm	450 mm

*Semiconductor Industry Association (SIA), December 2001. *Po

*Possible 2-year cycle.

Extreme Ultraviolet (EUV) Lithography

EIT telescope **SOHO** mission

(b)

(Courtesy of L.Golub, Harvard-Smithsonian and T. Barbee, LLNL)

The Extreme Ultraviolet Imaging Telescope (EIT)

EIT composite image

Multilayer coated normal incidence cassegrain objective

17,1 nm (blue) 19.5 nm (green) 28,4 nm (red)

and R. Holm, Miles Lab)

Motivation

Excellent XUV optics for sources emitting ultrashort pulses:

FEL

HHG

(aspiration for sub-) fs pulses grazing optics due to high intensities

as pulses (requires large ΔE) normal incidence optics possible

Both require optics for spectral filtering, phase shaping, ...

Motivation

Excellent XUV optics for sources emitting ultrashort pulses:

FEL

(aspiration for sub-) fs pulses grazing optics due to high intensities

as pulses (requires large ΔE) normal incidence optics possible

Photon flux essential!

Both require optics for spectral filtering, phase shaping, ...

steering bound electrons with controlled light fields: the birth of an attosecond pulse

 $P \simeq 10 \ \mu W \rightarrow 2 \times 10^{12} \text{ ph/sec} @ 36 \text{ nm} (n = 21; 34 \text{ eV})$

Courtesy of Professors Margaret Murnane and Henry Kapteyn, Univ. Colorado

Lasing Begins with Amplified Spontaneous Emission

at Various Labs Around the World

Table-top EUV Lasers

Synchrotron Radiation

Bending Magnet:

$$\hbar\omega_c = \frac{3e\hbar B\gamma^2}{2m} \tag{5.7}$$

Wiggler:

$$\hbar\omega_c = \frac{3e\hbar B\gamma^2}{2m} \tag{5.80}$$

$$n_c = \frac{3K}{4} \left(1 + \frac{K^2}{2} \right) \tag{5.82}$$

$$P_T = \frac{\pi e K^2 \gamma^2 I N}{3\epsilon_0 \lambda_u} \tag{5.85}$$

Undulator:

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right) \quad (5.28)$$

$$K = \frac{eB_0\lambda_u}{2\pi mc} \tag{5.18}$$

$$\theta_{\rm cen} = \frac{1}{\gamma^* \sqrt{N}} \tag{5.15}$$

$$\left. \frac{\Delta \lambda}{\lambda} \right|_{\text{cen}} = \frac{1}{N} \tag{5.14}$$

$$\bar{P}_{\text{cen}} = \frac{\pi e \gamma^2 I}{\epsilon_0 \lambda_u} \frac{K^2}{\left(1 + \frac{K^2}{2}\right)^2} f(K) \quad (5.41)$$

IV.1.2 Synchrotronstrahlungsquellen

Prinzip: Abstrahlung elektromagnetischer Wellen durch beschleunigte Ladung (vgl. oszillierender Dipol)

hier: Querbeschleunigung der Ladungen bei relativistischer Geschwindigkeit

Schwerpunktsystem des Elektrons

Laborsystem

Synchrotron Radiation from Relativistic Electrons

V << C

Note: Angle-dependent doppler shift

Synchrotronstrahlung

Abstrahlung im Ablenkmagnet

Bending Magnet Photon Flux at the ALS

• not as bright as undulator

Professor David Attwood

Synchrotronstrahlung

durch alternierende Magnete: Überlagerung der Abstrahlprozesse

wiggler

Undulator Radiation

Info über Synchrotronstrahlung im Internet

DESY Deutsches Elektronensynchrotron HASYLAB: Hamburger Synchrotronstrahlungslabor www-hasylab.desy.de

BESSY

Berliner Elektronenspeicherring – Gesellschaft für Synchrotronstrahlung www.bessy.de/guided_tour/

ESRF European Synchrotron Research Facility, Grenoble, Frankreich <u>www.esrf.fr</u>

Preis ≥ € 1.000.000.000

Höchstbrillante Röntgenquelle : Der Freie Elektronenlaser SASE Prinzip

www6.slac.stanford.edu

Mutual coherence factor

$$\Gamma_{12}(\tau) \equiv \langle E_1(t+\tau)E_2^*(t)\rangle \tag{8.1}$$

Normalize degree of spatial coherence (complex coherence factor)

$$\mu_{12} = \frac{\langle E_1(t)E_2^*(t)\rangle}{\sqrt{\langle |E_1|^2\rangle}\sqrt{\langle |E_2|^2\rangle}}$$
(8.12)

A high degree of coherence $(\mu \rightarrow 1)$ implies an ability to form a high contrast interference (fringe) pattern. A low degree of coherence $(\mu \rightarrow 0)$ implies an absence of interference, except with great care. In general radiation is partially coherent.

Longitudinal (temporal) coherence length

$$\ell_{\rm coh} = \frac{\lambda^2}{2 \,\Delta\lambda} \tag{8.3}$$

Full spatial (transverse) coherence

$$d \cdot \theta = \lambda / 2\pi \tag{8.5}$$

Courtesy of Prof. Jorge Rocca, Colorado State Univ.

Crystallography overcomes radiation damage and optics limitations, but requires crystals

- ★ Radiation damage is spread out over 10¹⁰ identical unit cells
- ★ Diffraction from unit cells adds up coherently to form strong Bragg peaks
- ★ ~ 60,000 structures solved (in protein data bank), but ~15,000 distinct structures

• The bottleneck is in growing crystals

X-ray free-electron lasers provide pulses that are intense, short duration, short wavelength, and coherent

DESY

Coherent diffractive imaging is lensless

Use a computer to phase the scattered light, rather than a lens

Nanocrystallography carried out in a flowing water microjet

- Single pulse diffraction from Photosystem 1 nanocrystals at LCLS
- E = 1.8 keV
- <10, 60, 200 fs pulse</p>

- 2 mJ pulse energy
- patterns collected at 30 Hz
- hit rate >50%
- 5 Tb data in one night!

Chapter One :

- Basic Absorption and Emission Processes
- Atomic Energy Levels and Allowed Transistions
- Scattering, Diffraction and Refraction

$$\hbar\omega\cdot\lambda = hc = 1239.842 \text{ eV nm}$$
(1.1)

1 joule $\Rightarrow 5.034 \times 10^{15} \lambda$ [nm] photons

(1.2a)

(1.2b)

1 watt
$$\Rightarrow 5.034 \times 10^{15} \lambda [nm] \frac{\text{photons}}{\text{s}}$$

K and L₃-Absorption Edges for Selected Elements

Element	z	K _{abs} -edge (eV)	L _{abs} -edge (eV)	$\lambda_{ m K-abs}$ (nm)	λ_{L-abs} (nm)	labs	
						100 eV (nm)	1 keV (μm)
Be	4	112		11.1	_	730	9.0
С	6	284		4.36		190	2.1
Ν	7	410		3.02		_	
0	8	543		2.28		_	_
H_2O						160	2.3
Al	13	1,560	73	0.795	17.1	34	3.1
Si	14	1,839	99	0.674	12.5	63	2.7
S	16	2,472	163	0.502	7.63	330	1.9
Ca	20	4,039	346	0.307	3.58	290	1.3
Ti	22	4,966	454	0.250	2.73	65	0.38
v	23	5,465	512	0.227	2.42	46	0.26
Cr	24	5,989	574	0.207	2.16	31	0.19
Fe	26	7,112	707	0.174	1.75	22	0.14
Ni	28	8,333	853	0.149	1.45	16	0.11
Cu	29	8,979	933	0.138	1.33	18	0.10
Se	34	12,658	1,434	0.0979	0.865	63	0.96
Mo	42	20,000	2,520	0.0620	0.492	200	0.19
Sn	50	29,200	3,929	0.0425	0.316	17	0.17
Xe	54	34,561	4,782	0.0359	0.259		
w	74	69,525	10,207	0.0178	0.121	28	0.13
Au	79	80,725	11,919	0.0154	0.104	28	0.10
		-					

Basic Ionization and Emission Processes in Isolated Atoms

(c) Fluorescent emission of characteristic radiation

Fluorescence and Auger Emission Yields

(Courtesy of M. Krause, Oak Ridge)

Electron Mean Free Paths As a Function of Energy

Courtesy of: Penn (a & b), Seah and Dench (c)

Bremsstrahlung Radiation: Braking Radiation from an Accelerated Charge

Continuum Bremsstrahlung Radiation and Narrow Characteristic Line Emission from a Solid Target with Electron Bombardment

Photoabsorption by Thin Foils and Isolated Atoms

Atomic Energy Levels and Allowed Transitions in the Bohr Atom

Equate Coulomb Force $Ze^2/4\pi\epsilon_0 r^2$ to the centripetal force mv^2/r :

$$E_n = \frac{mZ^2 e^4}{32\pi^2 \epsilon_0^2 \hbar^2} \frac{1}{n^2}$$
(1.4)

$$r_n = \frac{4\pi\epsilon_0\hbar^2}{me^2 Z} \cdot n^2 \tag{1.5}$$

$$\hbar\omega = E_i - E_f = \frac{me^4}{32\pi^2\epsilon_0\hbar^2} \left[\frac{1}{n_f^2} - \frac{1}{n_i^2}\right] Z^2 \quad (1.6)$$
13.6 eV

$$r_n = \frac{a_0 n^2}{Z}$$
; $a_0 = 0.529$ Å (1.9)

Quantum Mechanics Based on a Probabilistic Wave Function, $\Psi({\bf r},{\it t})$

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r},\,t)\Psi(\mathbf{r},\,t) = i\hbar\,\frac{\partial\Psi(\mathbf{r},\,t)}{\partial t}$$
(1.10)

$$P(\mathbf{r}, t)d\mathbf{r} = \Psi^*(\mathbf{r}, t) \Psi(\mathbf{r}, t)d\mathbf{r}$$
(1.13)

$$\overline{\mathbf{r}} = \int \int \int \mathbf{r} P(\mathbf{r}, t) d\mathbf{r} = \int \int \int \Psi^*(\mathbf{r}, t) \mathbf{r} \Psi(\mathbf{r}, t) d\mathbf{r} \qquad (1.15)$$

quantum numbers: n, ℓ , m_{ℓ}, m_s

selection rules for allowed transitions: $\Delta \ell = \pm 1$ $\Delta j = 0, \pm 1$

Radiative Decay Involves An Atom Oscillating Between Two Stationary States at the Frequency ω_{if} = (E_i – E_f) / \hbar

Probabilistic Radial Charge Distribution (e/Å) in the Argon Atom

Courtesy of Eisberg and Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles.

Energy Levels, Absorption Edges, and Characteristic Line Emissions for a Multi-Electron Atom

Energy Levels, Quantum Numbers, and Allowed Transitions for the Copper Atom

Element	K 1s	L ₁ 2s	L ₂ 2p _{1/2}	L ₃ 2p _{3/2}	M ₁ 3s	M ₂ 3p _{1/2}	M3 3p3/2	M4 3d3/2	M5 3d5/2	N ₁ 4s	N ₂ 4p _{1/2}	N ₃ 4p _{3/2}
1 H	13.6											
2 He	24.6 ^b											
3 Li	54.7°											
4 Be	111.5 ^b											
5 B	188"											
6 C	284.2 ^b											
7 N	409.9 ^b	37.3°										
80	543.1 ^b	41.6 ^b										
9 F	696.7											
10 Ne	870.2	48.5*	21.7	21.6								
11 Na	1070.8 ^c	63.5 ^c	30.4 ^c	30.5"								
12 Mg	1303.0 ^c	88.6 ^b	49.6 ^c	49.2 ^c								
13 Al	1559.6	117.8 ^b	72.9 [°]	72.5"								
14 Si	1838.9	149.7	99.8	99.2 ^b								
15 P	2145.5	189"	136°	135								
16 S	2472	230.9 ^b	163.6 ^b	162.5 ^b								
17 CI	2822.4	270.2 [*]	202*	200"								
18 Ar	3205.9%	326.3 ^b	250.6*	248.4 ^b	29.3 ^b	15.9	15.7*					
19 K	3608.4*	378.6*	297.3 ^b	294.6 ^b	34.8 ^b	18.3 ^b	18.3*					
20 Ca	4038.5*	438.4 ^c	349.7°	346.2 ^c	44.3 ^c	25.4 ^c	25.4 ^c					
21 Sc	4492.8	498.0*	403.6*	398 75	51.10	28 30	28.30					
22 Ti	4966.4	560.95	461.20	453.80	58.70	32.60	32.65					
23 V	5465.1	626.70	519.80	51216	66.30	37.20	37.25					
24 C+	5080.2	605 70	592.90	574.10	74.16	12 26	12 26					
24 CI 25 Ma	6520.0	760.10	2 4 0 OC	620.20	00.00	42.2	42.2					
25 MII	0339.0	/09.1	049.9	038.7	82.5	47.2	47.2					
26 Fe	7112.0	844.6 ^c	719.9	706.8 ^c	91.3°	52.7 ^c	52.7°					
27 Co	7708.9	925.1°	793.3°	778.1 ^c	101.0°	58.9°	58.9°					
28 Ni	8332.8	1008.6 ^c	870.0 ^c	852.7 ^c	110.8 ^c	68.0 ^c	66.2 ^c					
29 Cu	8978.9	1096.7°	952.3°	932.5°	122.5°	77.3°	75.1 ^c					
30 Zn	9658.6	1196.2*	1044.9	1021.8 ^b	139.80	91.4 ^b	88.6*	10.2*	10.1*			

TABLE B.1. Electron binding energies in electron volts for the elements in their natural forms.^a

Element	$K\alpha_1$	$K\alpha_2$	Kβ ₁	$L\alpha_1$	$L\alpha_2$	L _{β1}	$L\beta_2$	$L\gamma_1$
3 Li	54.3							
4 Be	108.5							
5 B	183.3							
6 C	277							
7 N	392.4							
80	524.9							
9 F	676.8							
10 Ne	848.6	848.6						
11 Na	1,040.98	1,040.98	1,071.1					
12 Mg	1,253.60	1,253.60	1,302.2					
13 AI	1,486.70	1,486.27	1,557.45					
14 Si	1,739.98	1,739.38	1,835.94					
15 P	2,013.7	2,012.7	2,139.1					
16 S	2,307.84	2,306.64	2,464.04					
17 Cl	2,622.39	2,620.78	2,815.6					
18 Ar	2,957.70	2,955.63	3,190.5					
19 K	3,313.8	3,311.1	3,589.6					
20 Ca	3,691.68	3,688.09	4,012.7	341.3	341.3	344.9		
21 Sc	4,090.6	4,086.1	4,460.5	395.4	395.4	399.6		
22 Ti	4,510.84	4,504.86	4,931.81	452.2	452.2	458.4		
23 V	4,952.20	4,944.64	5,427.29	511.3	511.3	519.2		
24 Cr	5,414.72	5,405.509	5,946.71	572.8	572.8	582.8		
25 Mn	5,898.75	5,887.65	6,490.45	637.4	637.4	648.8		
26 Fe	6,403.84	6,390.84	7,057.98	705.0	705.0	718.5		
27 Co	6,930.32	6,915.30	7,649.43	776.2	776.2	791.4		
28 Ni	7,478.15	7,460.89	8,264.66	851.5	851.5	868.8		
29 Cu	8,047.78	8,027.83	8,905.29	929.7	929.7	949.8		
30 Zn	8,638.86	8,615.78	9,572.0	1,011.7	1,011.7	1,034.7		

TABLE B.2. Photon energies, in electron volts, of principal K and L shell emission lines.^a

Scattering, Diffraction, and Refraction

(a) Isotropic scattering from a point object

(c) Diffraction by an ordered array of atoms, as in a crystal

(e) Refraction at an interface

(b) Non-isotropic scattering from a partially ordered system

(d) Diffraction from a well-defined geometric structure, such as a pinhole

(f) Total external reflection

Periodic Table of the Elements

